Dissemin is shutting down on January 1st, 2025

Published in

ASME 2009 International Manufacturing Science and Engineering Conference, Volume 1

DOI: 10.1115/msec2009-84140

Links

Tools

Export citation

Search in Google Scholar

Evaluation of Cooling Potential and Tool Life in Turning Using Metalworking Fluids Delivered in Supercritical Carbon Dioxide

Proceedings article published in 2009 by Andres F. Clarens, Ye-Eun Park, Jacob Temme, Kim Hayes, Fu Zhao ORCID, Steve Skerlos
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Carbon Dioxide is an industrial byproduct that has been proposed as an alternative metalworking fluid (MWF) carrier with lower environmental impacts and better cooling potential than existing MWFs. This paper investigates the heat removal and tool life effects of rapidly expanding supercritical CO2 (scCO2)-based MWFs relative to MWFs delivered as a flood of semi-synthetic emulsion or as minimum quantity lubrication (MQL) sprays. When cutting both compacted graphite iron (CGI) and titanium, tool wear was most effectively controlled using the scCO2-based MWF compared with the other MWFs. Analysis in this paper suggests that the performance benefit imparted by rapidly expanding scCO2 appears to be related to both the cooling potential and penetration of the sprays into the cutting zone. High-pressure gas sprays have lower viscosity and higher velocity than conventional MWFs. An experiment in which the spray direction was varied clearly demonstrated the importance of spray penetration in tool wear suppression. The type of gas spray is also a significant factor in tool wear suppression. For instance, a spray of N2 delivered under similar conditions to CO2 effectively reduced tool wear relative to water based fluids, but not as much as CO2. This result is particularly relevant for MQL sprays which are shown to not cool nearly as effectively as scCO2 MWFs. These results inform development of scCO2-based MWFs in other machining operations, and provide insight into the optimization of scCO2 MWF delivery.