Published in

2010 14th International Heat Transfer Conference, Volume 6

DOI: 10.1115/ihtc14-23161

Links

Tools

Export citation

Search in Google Scholar

Thermal Conductivity of Highly Ordered Amorphous and Crystalline Mesoporous Titania Thin Films

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper reports the cross-plane thermal conductivity of amorphous and crystalline templated mesoporous titania thin films synthesized by evaporation-induced self-assembly. Both sol-gel and nanocrystal-based films were considered, with respective average porosities of 30% and 35%. The pore diameter ranged from 7 to 25 nm and film thickness from 60 to 370 nm while the average wall thickness varied from 3 to 25 nm. Nanocrystals in crystalline mesoporous films featured diameters between 9 and 13 nm. The thermal conductivity was measured at room temperature using the 3ω method. The experimental setup and the associated analysis were validated by comparing the thermal conductivity measurements with data reported in the literature for dense titania films with thickness ranging from 95 to 1000 nm. The cross-plane thermal conductivity of the amorphous mesoporous titania thin films did not show strong dependence on pore size, wall thickness, or film thickness. This can be attributed to the high atomic scale disorder of amorphous materials. Heat is thus mainly carried by localized non-propagating vibrational modes. The average thermal conductivity of the amorphous mesoporous titania films was identical to that of the nanocrystal-based films and equal to 0.37 W/m.K. Thermal conductivity of sol-gel crystalline mesoporous titania thin films was significantly larger than that of their amorphous counterparts. It also depended on the organic template used to make the films. The results indicated that the pore size was not an important factor. Instead thermal conductivity depended only on porosity, crystallinity, nanocrystal size and connectivity.