Published in

Volume 3: Combustion, Fire and Reacting Flow; Heat Transfer in Multiphase Systems; Heat Transfer in Transport Phenomena in Manufacturing and Materials Processing; Heat and Mass Transfer in Biotechnology; Low Temperature Heat Transfer; Environmental Heat Transfer; Heat Transfer Education; Visualization of Heat Transfer

DOI: 10.1115/ht2009-88180

Links

Tools

Export citation

Search in Google Scholar

An Experimental Investigation of Three-Dimensional Flat-Plate Oscillating Heat Pipe

Proceedings article published in 2009 by Scott M. Thompson, Hongbin Ma, Robert A. Winholtz, Corey Wilson
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An experimental investigation on the effects of condenser temperatures, heating modes and heat inputs on a miniature, three dimensional flat-plate oscillating heat pipe (3D FP-OHP) was conducted visually and thermally. The 3D FP-OHP was charged with acetone at a filling ratio of 0.80, had dimensions of 101.60 × 63.50 × 2.54 mm3, possessed 30 total turns, and had square channels on both sides of the device with a hydraulic diameter of 0.762 mm. Unlike traditional flat-plate designs, this new three-dimensional, compact design allows for multiple heating arrangements and higher heat fluxes. Transient and steady-state temperature measurements were collected at various heat inputs and the activation/start-up was clearly observed for both bottom and side heating modes during reception of its excitation power for this miniature 3D FP-OHP. The neutron imaging technology was simultaneously employed to observe the internal working fluid flow for all tests directly through the heat pipe’s copper wall. The activation was accompanied with a pronounced temperature field relaxation and the onset of chaotic thermal oscillations — all occurring with the same general oscillatory pattern at locations all around the 3D FP-OHP. Qualitative and quantitative analysis of these thermal oscillations, along with the presentation of the average temperature difference and thermal resistance, for all experimental conditions are provided. The novelty of the three-dimensional OHP design is its ability to still produce the oscillating motions of liquid plugs and vapor bubbles and, more importantly, its ability to remove higher heat fluxes.