Published in

Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Education; Electric Power; Manufacturing Materials and Metallurgy

DOI: 10.1115/gt2010-23584

Links

Tools

Export citation

Search in Google Scholar

Assessment of the Energy Conversion of Whole Oil Fruits With a Pyrolysis and Gas Turbine Process

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Crude vegetable oil energy conversion is addressed as an important issue for the electric energy production without changing the CO2 concentration in atmosphere. The oil is obtained by grinding oily fruits while a high amount of energy rich residues is produced. The present paper evaluates the thermodynamic and environmental performances of a plant that converts the whole fruit into energy through pyrolysis. Vegetable Oil is used to fuel an internal combustion engine while solid residuals of the oil production are used to fuel an Integrated Pyrolysis Regenerated Plant (IPRP) technology based plant. Tars from pyrolysis process are water scrubbed from syngas and then emulsioned with vegetable oil to increase the electric energy production. IPRP concept is based on a gas turbine (GT) fuelled with the syngas produced in a rotary kiln pyrolyzer fed with Biomass or Wastes (B&W); GT exhaust gases together with combustion of pyrolysis by-products (char), is used to sustain the pyrolysis process. The IPRP concept was modelled through thermodynamic relations, energy balances and data available in the Literature for oil yields and husks pyrolysis products. The analysis was carried out investigating the influence on plant performances of main thermodynamic parameters of the GT and on pyrolysis temperature. Results are collected for typical parameters of different GT sizes, namely the manometric compression ratio and the turbine inlet temperature. The paper discusses best efficiency points of different plant sizes when fuelled with syngas and tar and oil for three important oil fruits namely sunflower, palm and soybean.