Published in

Volume 1: Advanced Energy Systems, Advanced Materials, Aerospace, Automation and Robotics, Noise Control and Acoustics, and Systems Engineering

DOI: 10.1115/esda2006-95740

Links

Tools

Export citation

Search in Google Scholar

Synthesis and Characterization of Mesoporous and Microporous Carbons With Potential Applications as Hydrogen Storage Media

Proceedings article published in 2006 by Marco Armandi, Barbara Bonelli ORCID, Edoardo Garrone
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The preparation and physico-chemical characterization of mesoporous and microporous carbons, obtained via a casting procedure, from a SBA-15 silica and a commercial Na-Y zeolite, is reported. XRD spectra showed that ordered carbon replicas occur in all cases. Micro-Raman spectra showed that rather homogeneous powders are obtained, exhibiting the presence of a graphitized carbon phase of small imperfect graphene sheets, typical of sp2 C, along with an amorphous one, notwithstanding the relatively low temperature adopted during the carbonization processes (1173 K). N2 adsorption isotherms at 77 K allowed the determination of BET surface areas and pore volumes: on account of the high porosity and the low specific weight, with respect to zeolites, for example, these carbon materials could be promising media for hydrogen storage. They could be used as such, or after convenient functionalization or metal doping.