Dissemin is shutting down on January 1st, 2025

Published in

BioMed Central, BMC Microbiology, 1(12), 2012

DOI: 10.1186/1471-2180-12-116

Links

Tools

Export citation

Search in Google Scholar

Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Plant root exudates have been shown to play an important role in mediating interactions between plant growth-promoting rhizobacteria (PGPR) and their host plants. Most investigations were performed on Gram-negative rhizobacteria, while much less is known about Gram-positive rhizobacteria. To elucidate early responses of PGPR to root exudates, we investigated changes in the transcriptome of a Gram-positive PGPR to plant root exudates. Results Bacillus amyloliquefaciens FZB42 is a well-studied Gram-positive PGPR. To obtain a comprehensive overview of FZB42 gene expression in response to maize root exudates, microarray experiments were performed. A total of 302 genes representing 8.2% of the FZB42 transcriptome showed significantly altered expression levels in the presence of root exudates. The majority of the genes (261) was up-regulated after incubation of FZB42 with root exudates, whereas only 41 genes were down-regulated. Several groups of the genes which were strongly induced by the root exudates are involved in metabolic pathways relating to nutrient utilization, bacterial chemotaxis and motility, and non-ribosomal synthesis of antimicrobial peptides and polyketides. Conclusions Here we present a transcriptome analysis of the root-colonizing bacterium Bacillus amyloliquefaciens FZB42 in response to maize root exudates. The 302 genes identified as being differentially transcribed are proposed to be involved in interactions of Gram-positive bacteria with plants.