Published in

Elsevier, Energy and Buildings, (79), p. 32-40, 2014

DOI: 10.1016/j.enbuild.2014.04.028

Links

Tools

Export citation

Search in Google Scholar

Evaluation of Phase Change Materials for Improving Thermal Comfort in a Super-Insulated Residential Building

Journal article published in 2014 by J. S. Sage-Lauck, David J. Sailor ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The demand for high performance buildings is on the rise. As a result, several new building standards have emerged including the Passive House Standard, a rigorous energy-use standard based on a super-insulated and very tightly sealed building envelope. A common challenge with passive house designs is that they tend to overheat. This study explores the use of phase change materials (PCMs), which store heat as they melt and release heat as the solidify, to reduce the number of overheated hours and improve thermal comfort for a case study passive house duplex located in Portland, Oregon, USA. In this study, a newly constructed passive house duplex was thoroughly instrumented to monitor indoor environmental quality metrics and building energy use. One unit of the duplex was outfitted with 130 kg of PCM while the other unit served as a control. The performance of the PCM was evaluated through analysis of observed data and through additional computer simulation using an EnergyPlus whole-building energy simulation model validated with observed data. The study found that installation of the PCM had a positive effect on thermal comfort, reducing the estimated annual overheated hours from about 400 to 200.