Published in

Nature Research, Nature, 7558(523), p. 63-66, 2015

DOI: 10.1038/nature14564

Links

Tools

Export citation

Search in Google Scholar

Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse

Journal article published in 2015 by Jean-Baptiste Vincent, Dennis Bodewits, Sébastien Besse, Holger Sierks, Cesare Barbieri, Philippe Lamy, Rafael Rodrigo, Detlef Koschny, Hans Rickman, Horst Uwe Keller, Jessica Agarwal, Michael F. A'Hearn, Anne-Thérèse Auger, M. Antonella Barucci, Jean-Loup Bertaux and other authors.
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Pits have been observed on many cometary nuclei mapped by spacecraft1, 2, 3, 4. It has been argued that cometary pits are a signature of endogenic activity, rather than impact craters such as those on planetary and asteroid surfaces. Impact experiments5, 6 and models7, 8 cannot reproduce the shapes of most of the observed cometary pits, and the predicted collision rates imply that few of the pits are related to impacts8, 9. Alternative mechanisms like explosive activity10 have been suggested, but the driving process remains unknown. Here we report that pits on comet 67P/Churyumov–Gerasimenko are active, and probably created by a sinkhole process, possibly accompanied by outbursts. We argue that after formation, pits expand slowly in diameter, owing to sublimation-driven retreat of the walls. Therefore, pits characterize how eroded the surface is: a fresh cometary surface will have a ragged structure with many pits, while an evolved surface will look smoother. The size and spatial distribution of pits imply that large heterogeneities exist in the physical, structural or compositional properties of the first few hundred metres below the current nucleus surface.