Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 31(104), p. 12867-12872, 2007

DOI: 10.1073/pnas.0705158104

Links

Tools

Export citation

Search in Google Scholar

Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Glioblastoma multiforme (GBM) is the most aggressive brain tumor in adults and remains incurable despite multimodal intensive treatment regimens. EGFRvIII is a truncated extracellular mutant of the EGF receptor (EGFR) commonly found in GBMs that confers enhanced tumorigenic behavior. To gain a molecular understanding of the mechanisms by which EGFRvIII acts, we have performed a large-scale analysis of EGFRvIII-activated phosphotyrosine-mediated signaling pathways and thereby have identified and quantified 99 phosphorylation sites on 69 proteins. Distinct signaling responses were observed as a function of titrated EGFRvIII receptor levels with the phosphatidylinositol 3-kinase pathway being dominant over the MAPK and STAT3 pathways at a high level of EGFRvIII expression. Within this data set, the activating phosphorylation site on the c-Met receptor was found to be highly responsive to EGFRvIII levels, indicating cross-activation of the c-Met receptor tyrosine kinase by EGFRvIII. To determine the significance of this finding, we devised a combined treatment regimen that used a c-Met kinase inhibitor and either an EGFR kinase inhibitor or cisplatin. This regimen resulted in enhanced cytotoxicity of EGFRvIII-expressing cells compared with treatment with either compound alone. These results suggest that the clinical use of c-Met kinase inhibitors in combination with either EGFR inhibitors or standard chemotherapeutics might represent a previously undescribed therapeutic approach to overcome the observed chemoresistance in patients with GBMs expressing EGFRvIII.