Dissemin is shutting down on January 1st, 2025

Published in

American Society for Cell Biology, Molecular Biology of the Cell, 9(13), p. 2977-2989

DOI: 10.1091/mbc.01-12-0568

Links

Tools

Export citation

Search in Google Scholar

Role of Fission Yeast Tup1-like Repressors and Prr1 Transcription Factor in Response to Salt Stress

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

In Schizosaccharomyces pombe, the Sty1 mitogen-activated protein kinase and the Atf1 transcription factor control transcriptional induction in response to elevated salt concentrations. Herein, we demonstrate that two repressors, Tup11 and Tup12, and the Prr1 transcription factor also function in the response to salt shock. We find that deletion of both tup genes together results in hypersensitivity to elevated cation concentrations (K+ and Ca2+) and we identifycta3 + , which encodes an intracellular cation transporter, as a novel stress gene whose expression is positively controlled by the Sty1 pathway and negatively regulated by Tup repressors. The expression ofcta3 + is maintained at low levels by the Tup repressors, and relief from repression requires the Sty1, Atf1, and Prr1. Prr1 is also required for KCl-mediated induction of several other Sty1-dependent genes such asgpx1 + andctt1 + . Surprisingly, the KCl-mediated induction of cta3 + expression occurs independently of Sty1 in a tup11Δ tup12Δ mutant and so the Tup repressors link induction to the Sty1 pathway. We also report that in contrast to a number of other Sty1- and Atf1-dependent genes, the expression of cta3 + is induced only by high salt concentrations. However, in the absence of the Tup repressors this specificity is lost and a range of stresses induces cta3 + expression.