Dissemin is shutting down on January 1st, 2025

Published in

National Institute of Environmental Health Sciences (NIEHS), Environmental Health Perspectives, 5(110), p. 523-526, 2002

DOI: 10.1289/ehp.02110523

Links

Tools

Export citation

Search in Google Scholar

Inorganic mercury and methylmercury in placentas of Swedish women.

Journal article published in 2002 by Karolin Ask, Agneta Åkesson, Agneta Akesson, Marika Berglund ORCID, Marie Vahter
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We determined levels of inorganic mercury (I-Hg) and methylmercury in placentas from 119 Swedish women, not selected with respect to high exposure of mercury. Our objective was to relate placental Hg species with maternal and fetal blood concentrations and to evaluate possible associations with selenium. We performed the analyses using automated alkaline solubilization/reduction and cold-vapor atomic fluorescence spectrophotometry. I-Hg levels in placenta increased with an increasing number of maternal dental amalgam fillings (p < 0.001). Despite placental accumulation (median, 1.3 microg/kg; range, 0.18-6.7 microg/kg wet weight), a substantial fraction of maternal blood I-Hg, probably as Hg(0), reached the fetus. Although MeHg transferred easily to the fetus, it also accumulated in the placenta. On average, 60% of placental Hg was in the form of MeHg. The median concentration was 1.8 microg/kg (range, 0-6.2 microg/kg wet weight), more than twice the maternal blood concentration. We found significant associations between MeHg and selenium in both maternal and umbilical cord blood but not in the placenta. The associations were particularly obvious in freshwater fish consumers, probably reflecting that fish is a source of both MeHg and selenium. We found no correlations between I-Hg and selenium. This study increases the understanding of Hg, in its different forms, in human placenta and how they are related to maternal and fetal exposure.