Published in

IOP Publishing, Physics in Medicine & Biology, 20(58), p. N279-N285, 2013

DOI: 10.1088/0031-9155/58/20/n279

Links

Tools

Export citation

Search in Google Scholar

On the Importance of Prompt Oxygen Changes for Hypofractionated Radiation Treatments

Journal article published in 2013 by Michael Kissick, David Campos, Albert van der Kogel, Randall Kimple ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This discussion is motivated by observations of prompt oxygen changes occurring prior to a significant number of cancer cells dying (permanently stopping their metabolic activity) from therapeutic agents like large doses of ionizing radiation. Such changes must be from changes in the vasculature that supplies the tissue or from the metabolic changes in the tissue itself. An adapted linear-quadratic treatment is used to estimate the cell survival variation magnitudes from repair and reoxygenation from a two-fraction treatment in which the second fraction would happen prior to significant cell death from the first fraction, in the large fraction limit. It is clear the effects of oxygen changes are likely to be the most significant factor for hypofractionation because of large radiation doses. It is a larger effect than repair. Optimal dose timing should be determined by the peak oxygen timing. A call is made to prioritize near real time measurements of oxygen dynamics in tumors undergoing hypofractionated treatments in order to make these treatments adaptable and patient-specific.