Published in

MDPI, Biosensors, 4(4), p. 461-471, 2014

DOI: 10.3390/bios4040461

Links

Tools

Export citation

Search in Google Scholar

Trimetallic (Aurod-Pdshell-Ptcluster) catalyst used as amperometric hydrogen peroxide sensor

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Bimetallic nanostructured core-shell structures are commonly used as catalysts in a wide variety of reactions. We surmised that the addition of an additional metal would potentially allow catalytic tailoring with the possibility of an increase in activity. Here a tri-metallic catalytic structure, consisting of clustered catalytic Pt on the surface of a Pd shell supported on a rod shaped Au core was fabricated. The significance of the additional metallic component is shown by comparative electrochemically active surface area (ECSA) analysis results for the trimetallic Aurod-Pdshell-Ptcluster, bimetallic Aurod-Ptcluster and monometallic JM-Pt (used as a reference), which have respective ECSA values (cm(2)/mgPt) of 1883.0, 1371.7 and 879. The potential utility of the trimetallic catalysts was shown in a hydrogen peroxide sensing protocol, which showed the catalyst to have a sensitivity of 604 ìA/mMcm(2) within a linear range of 0.0013-6.191 mM.