Published in

Nature Research, Nature Communications, 1(5), 2014

DOI: 10.1038/ncomms4523

Links

Tools

Export citation

Search in Google Scholar

Synthesis of luminescent europium defects in diamond

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Lanthanides are vital components in lighting, imaging technologies and future quantum memory applications due to their narrow optical transitions and long spin coherence times. Recently, diamond has become a preeminent platform for realization of many experiments in quantum information science. In this work, we demonstrate a promising approach to incorporate Eu ions into single crystal diamond and nanodiamonds, providing a means to harness the exceptional characteristics of both lanthanides and diamond in a single material. Polyelectrolytes are used to electrostatically assemble Eu(III) chelate molecules on diamond and subsequently chemical vapor deposition is employed for the growth of a high quality diamond crystal. Photoluminescence, cathodoluminescence and time resolved fluorescence measurements show that the Eu atoms retain the characteristic optical signature of Eu(III) upon incorporation into the diamond lattice. Computational modelling supports the experimental findings, corroborating that Eu3+ in diamond is a stable configuration within the diamond bandgap. The versatility of the synthetic technique is further illustrated through the creation of the well-studied Cr defect center. Together these defect centers demonstrate the outstanding chemical control over the incorporation of impurities into diamond enabled by the electrostatic assembly together with chemical vapour deposition growth.