Published in

BioMed Central, BMC Musculoskeletal Disorders, 1(14), 2013

DOI: 10.1186/1471-2474-14-360

Links

Tools

Export citation

Search in Google Scholar

Biomechanical evaluation of combined short segment fixation and augmentation of incomplete osteoporotic burst fractures

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Treating traumatic fractures in osteoporosis is challenging. Multiple clinical treatment options are found in literature. Augmentation techniques are promising to reduce treatment-related morbidity. In recent years, there have been an increasing number of reports about extended indication for augmentation techniques. However, biomechanical evaluations of these techniques are limited. Methods Nine thoracolumbar osteoporotic spinal samples (4 FSU) were harvested from postmortem donors and immediately frozen. Biomechanical testing was performed by a robotic-based spine tester. Standardized incomplete burst fractures were created by a combination of osteotomy-like weakening and high velocity compression using a hydraulic material testing apparatus. Biomechanical measurements were performed on specimens in the following conditions: 1) intact, 2) fractured, 3) bisegmental instrumented, 4) bisegmental instrumented with vertebroplasty (hybrid augmentation, HA) and 5) stand-alone vertebroplasty (VP). The range of motion (RoM), neutral zone (NZ), elastic zone (EZ) and stiffness parameters were determined. Statistical evaluation was performed using Wilcoxon signed-rank test for paired samples (p = 0.05). Results Significant increases in RoM and in the NZ and EZ (p