Published in

Oxford University Press, Bioinformatics, 8(28), p. 1086-1092, 2012

DOI: 10.1093/bioinformatics/bts094

Links

Tools

Export citation

Search in Google Scholar

Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels

Journal article published in 2012 by Marcel H. Schulz, Daniel R. Zerbino, Martin Vingron, Ewan Birney ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Motivation: High-throughput sequencing has made the analysis of new model organisms more affordable. Although assembling a new genome can still be costly and difficult, it is possible to use RNA-seq to sequence mRNA. In the absence of a known genome, it is necessary to assemble these sequences de novo, taking into account possible alternative isoforms and the dynamic range of expression values. Results: We present a software package named Oases designed to heuristically assemble RNA-seq reads in the absence of a reference genome, across a broad spectrum of expression values and in presence of alternative isoforms. It achieves this by using an array of hash lengths, a dynamic filtering of noise, a robust resolution of alternative splicing events and the efficient merging of multiple assemblies. It was tested on human and mouse RNA-seq data and is shown to improve significantly on the transABySS and Trinity de novo transcriptome assemblers. Availability and implementation: Oases is freely available under the GPL license at www.ebi.ac.uk/~zerbino/oases/ Contact: dzerbino@ucsc.edu Supplementary information: Supplementary data are available at Bioinformatics online.