Dissemin is shutting down on January 1st, 2025

Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 41(105), p. 15809-15814, 2008

DOI: 10.1073/pnas.0804422105

Links

Tools

Export citation

Search in Google Scholar

Oviduct-specific glycoprotein and heparin modulate sperm–zona pellucida interaction during fertilization and contribute to the control of polyspermy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Polyspermy is an important anomaly of fertilization in placental mammals, causing premature death of the embryo. It is especially frequent under in vitro conditions, complicating the successful generation of viable embryos. A block to polyspermy develops as a result of changes after sperm entry (i.e., cortical granule exocytosis). However, additional factors may play an important role in regulating polyspermy by acting on gametes before sperm-oocyte interaction. Most studies have used rodents as models, but ungulates may differ in mechanisms preventing polyspermy. We hypothesize that zona pellucida (ZP) changes during transit of the oocyte along the oviductal ampulla modulate the interaction with spermatozoa, contributing to the regulation of polyspermy. We report here that periovulatory oviductal fluid (OF) from sows and heifers increases (both, con- and heterospecifically) ZP resistance to digestion with pronase (a parameter commonly used to measure the block to polyspermy), changing from digestion times of approximately 1 min (pig) or 2 min (cattle) to 45 min (pig) or several hours (cattle). Exposure of oocytes to OF increases monospermy after in vitro fertilization in both species, and in pigs, sperm-ZP binding decreases. The resistance of OF-exposed oocytes to pronase was abolished by exposure to heparin-depleted medium; in a medium with heparin it was not altered. Proteomic analysis of the content released in the heparin-depleted medium after removal of OF-exposed oocytes allowed the isolation and identification of oviduct-specific glycoprotein. Thus, an oviduct-specific glycoprotein-heparin protein complex seems to be responsible for ZP changes in the oviduct before fertilization, affecting sperm binding and contributing to the regulation of polyspermy.