Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Microvascular Research, (99), p. 118-126

DOI: 10.1016/j.mvr.2015.04.002

Links

Tools

Export citation

Search in Google Scholar

Global gene expression profiling of telangiectasial tissue from patients with hereditary hemorrhagic telangiectasia

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

UNLABELLED: Hereditary hemorrhagic telangiectasia (HHT), the most common inherited vascular disorder, is predominantly caused by mutations in ENG and ACVRL1, which are part of the transforming growth factor beta (TGF-β) signaling pathway. HHT is characterized by the presence of mucocutaneous telangiectases and arteriovenous malformations in visceral organs, primarily the lungs, brain and liver. The most common symptom in HHT is epistaxis originating from nasal telangiectasia, which can be difficult to prevent and can lead to severe anemia. The clinical manifestations of HHT are extremely variable, even within family members, and the exact mechanism of how endoglin and ALK1 haploinsufficiency leads to HHT manifestations remains to be identified. OBJECTIVES: The purpose of this study was to detect significantly differentially regulated genes in HHT, and try to elucidate the pathways and regulatory mechanisms occurring in the affected tissue of HHT patients, in order to further characterize this disorder and hypothesize on how telangiectases develop. By microarray technology (Agilent G3 Human GE 8x60), we performed global gene expression profiling of mRNA transcripts from HHT nasal telangiectasial (n = 40) and non-telangiectasial (n = 40) tissue using a paired design. Comparing HHT telangiectasial and non-telangiectasial tissue, significantly differentially expressed genes were detected using a paired t-test. Gene set analysis was performed using GSA-SNP. In the group of ENG mutation carriers, we detected 67 differentially expressed mRNAs, of which 62 were down-regulated in the telangiectasial tissue. Gene set analysis identified the gene ontology (GO) terms vasculogenesis, TGF-β signaling, and Wnt signaling as differentially expressed in HHT1. Altered Wnt signaling might be related to HHT pathogenesis and a greater understanding of this may lead to the discovery of therapeutic targets in HHT.