Dissemin is shutting down on January 1st, 2025

Published in

American Society of Nephrology, Journal of the American Society of Nephrology, 1(24), p. 43-52, 2013

DOI: 10.1681/asn.2012060571

Links

Tools

Export citation

Search in Google Scholar

Loss of Properdin Exacerbates C3 Glomerulopathy Resulting from Factor H Deficiency

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Complement factor H (CFH) is a negative regulator of the alternative pathway of complement, and properdin is the sole positive regulator. CFH-deficient mice (CFH(-/-)) develop uncontrolled C3 activation and spontaneous renal disease characterized by accumulation of C3 along the glomerular basement membrane, but the role of properdin in the pathophysiology is unknown. Here, we studied mice deficient in both CFH and properdin (CFH(-/-).P(-/-)). Although CFH(-/-) mice had plasma depleted of both C3 and C5, CFH(-/-).P(-/-) animals exhibited depletion of C3 predominantly, recapitulating the plasma complement profile observed in humans with properdin-independent C3 nephritic factors. Glomerular inflammation, thickening of the capillary wall, and glomerular C3 staining were significantly increased in CFH(-/-).P(-/-) compared with CFH(-/-) mice. We previously reported that exogenous CFH ameliorates C3 staining of the glomerular basement membrane and triggers the appearance of mesangial C3 deposits in CFH(-/-) mice; here, we show that these effects require properdin. In summary, during uncontrolled activation of C3 driven by complete CFH deficiency, properdin influences the intraglomerular localization of C3, suggesting that therapeutic inhibition of properdin would be detrimental in this setting.