Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Toxicological Sciences, 1(131), p. 206-216, 2012

DOI: 10.1093/toxsci/kfs280

Links

Tools

Export citation

Search in Google Scholar

Chlorpyrifos-, Diisopropylphosphorofluoridate-, and Parathion-Induced Behavioral and Oxidative Stress Effects: Are They Mediated by Analogous Mechanisms of Action?

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Exposure to organophosphates (OPs) can lead to cognitive deficits and oxidative damage. Little is known about the relationship between behavioral deficits and oxidative stress within the context of such exposures. Accordingly, the first experiment was carried out to address this issue. Male Wistar rats were administered 250mg/kg of chlorpyrifos (CPF), 1.5mg/kg of diisopropylphosphorofluoridate (DFP), or 15mg/kg of parathion (PTN). Spatial learning in the water maze task was evaluated, and F2-isoprostanes (F2-IsoPs) and prostaglandin (PGE2) were analyzed in the hippocampus. A second experiment was designed to determine the degree of inhibition of brain acetylcholinesterase (AChE) activity, both the soluble and particulate forms of the enzyme, and to assess changes in AChE gene expression given evidence on alternative splicing of the gene in response to OP exposures. In addition, brain acylpeptide hydrolase (APH) activity was evaluated as a second target for OP-mediated effects. In both experiments, rats were sacrificed at various points to determine the time course of OPs toxicity in relation to their mechanism of action. Results from the first experiment suggest cognitive and emotional deficits after OPs exposure, which could be due to, at least in part, increased F2-IsoPs levels. Results from the second experiment revealed inhibition of brain AChE and APH activity at various time points post OP exposure. In addition, we observed increased brain read-through splice variant AChE (AChE-R) mRNA levels after 48h PTN exposure. In conclusion, this study provides novel data on the relationship between cognitive alterations and oxidative stress, and the diverse mechanisms of action along a temporal axis in response to OP exposures in the rat.