Published in

American Chemical Society, Langmuir, 28(28), p. 10495-10503, 2012

DOI: 10.1021/la301181b

Links

Tools

Export citation

Search in Google Scholar

Structural Evolution of Environmentally Responsive Cationic Liposome–DNA Complexes with a Reducible Lipid Linker

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Environmentally responsive materials, i.e., materials that respond to changes in their environment with a change in their properties or structure, are attracting an increasing amount of interest. We recently designed and synthesized a series of cleavable multivalent lipids (CMVLn, with n = 2 to 5 the number of positive headgroup charges at full protonation) with a disulfide bond in the linker between cationic headgroup and hydrophobic tails. The self-assembled complexes of the CMVLs and DNA are a prototypical environmentally responsive material, undergoing extensive structural rearrangement when exposed to reducing agents. We investigated the structural evolution of CMVL–DNA complexes at varied complex composition, temperature and incubation time using small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). A related lipid with a stable linker, TMVL4, was used as a control. In a nonreducing environment CMVL–DNA complexes form the lamellar (LαC) phase, with DNA rods sandwiched between lipid bilayers. However, new self-assembled phases form when the disulfide linker is cleaved by dithiothreitol or the biologically relevant reducing agent glutathione. The released DNA and cleaved CMVL headgroups form a “loosely organized” phase, giving rise to a characteristic broad SAXS correlation profile. CMVLs of high headgroup charge also form condensed DNA bundles. Intriguingly, the cleaved hydrophobic tails of the CMVLs reassemble into tilted chain-ordered Lβ′ phases upon incubation at physiological temperature (37 °C), as indicated by characteristic WAXS peaks. X-ray scattering further reveals that two of the three phases (LβF, LβL, and LβI) comprised by the Lβ′ phase coexist in these samples. The described system may have applications in lipid-based nanotechnologies.