Published in

Elsevier, Journal of Biological Chemistry, 45(286), p. 38924-38931, 2011

DOI: 10.1074/jbc.m111.272419

Links

Tools

Export citation

Search in Google Scholar

Methionine Oxidation of Sup35 Protein Induces Formation of the [PSI+] Prion in a Yeast Peroxiredoxin Mutant

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The frequency with which the yeast [PSI(+)] prion form of Sup35 arises de novo is controlled by a number of genetic and environmental factors. We have previously shown that in cells lacking the antioxidant peroxiredoxin proteins Tsa1 and Tsa2, the frequency of de novo formation of [PSI(+)] is greatly elevated. We show here that Tsa1/Tsa2 also function to suppress the formation of the [PIN(+)] prion form of Rnq1. However, although oxidative stress increases the de novo formation of both [PIN(+)] and [PSI(+)], it does not overcome the requirement of cells being [PIN(+)] to form the [PSI(+)] prion. We use an anti-methionine sulfoxide antibody to show that methionine oxidation is elevated in Sup35 during oxidative stress conditions. Abrogating Sup35 methionine oxidation by overexpressing methionine sulfoxide reductase (MSRA) prevents [PSI(+)] formation, indicating that Sup35 oxidation may underlie the switch from a soluble to an aggregated form of Sup35. In contrast, we were unable to detect methionine oxidation of Rnq1, and MSRA overexpression did not affect [PIN(+)] formation in a tsa1 tsa2 mutant. The molecular basis of how yeast and mammalian prions form infectious amyloid-like structures de novo is poorly understood. Our data suggest a causal link between Sup35 protein oxidation and de novo [PSI(+)] prion formation.