Dissemin is shutting down on January 1st, 2025

Published in

Wiley, NMR in Biomedicine, 3(28), p. 344-352, 2015

DOI: 10.1002/nbm.3256

Links

Tools

Export citation

Search in Google Scholar

Specific absorption rate in neonates undergoing magnetic resonance procedures at 1.5 T and 3 T

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

MRI is finding increased clinical use in neonatal populations; the extent to which electromagnetic models used for quantification of specific absorption rate (SAR) by commercial MRI scanners accurately reflect this alternative scenario is unclear. This study investigates how SAR predictions relating to adults can be related to neonates under differing conditions when imaged using 1.5 T and 3 T MRI scanners. Electromagnetic simulations were produced in neonatal subjects of different sizes and positions within a generic MRI body transmit device operating at both 64 MHz and 128 MHz, corresponding to 1.5 T and 3 T MRI scanners, respectively. An adult model was also simulated, as was a spherical salt-water phantom, which was also used in a calorimetry experiment. The SAR in neonatal subjects was found to be less than that experienced in an adult in all scenarios; however, the overestimation factor was variable. For example a 3 T body scan resulting in local 10 g SAR of 10.1 W kg(-1) in an adult would deposit 2.6 W kg(-1) in a neonate: an approximately fourfold difference. The SAR experienced by neonatal subjects undergoing MRI is lower than that in adults in equivalent situations. If the safety of such procedures is assessed using adult-appropriate models then the result is a conservative estimate.