Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, The Journal of Chemical Physics, 22(142), p. 224303, 2015

DOI: 10.1063/1.4921315

Links

Tools

Export citation

Search in Google Scholar

Near ultraviolet photochemistry of 2-bromo- and 2-iodothiophene:Revealing photoinduced ring opening in the gas phase?

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Velocity map imaging methods, with a new and improved ion optics design, have been used to explore the near ultraviolet photodissociation dynamics of gas phase 2-bromo- and 2-iodothiophene molecules. In both cases, the ground (X) and spin-orbit excited (X*) (where X = Br, I) atom products formed at the longest excitation wavelengths are found to recoil with fast, anisotropic velocity distributions, consistent with prompt C-X bond fission following excitation via a transition whose dipole moment is aligned parallel to the breaking bond. Upon tuning to shorter wavelengths, this fast component fades and is progressively replaced by a slower, isotropic recoil distribution. Complementary electronic structure calculations provide a plausible explanation for this switch in fragmentation behaviour-namely, the opening of a rival C-S bond extension pathway to a region of conical intersection with the ground state potential energy surface. The resulting ground state molecules are formed with more than sufficient internal energy to sample the configuration space associated with several parent isomers and to dissociate to yield X atom products in tandem with both cyclic and ring-opened partner fragments.