Published in

American Chemical Society, The Journal of Physical Chemistry A, 35(114), p. 9507-9514, 2010

DOI: 10.1021/jp102272z

Links

Tools

Export citation

Search in Google Scholar

Development and validation of a ReaxFF reactive force field for Cu-cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

To enable large-scale reactive dynamic simulations of copper oxide/water and copper ion/water interactions we have extended the ReaxFF reactive force field framework to Cu/O/H interactions. To this end, we employed a multistage force field development strategy, where the initial training set (containing metal/metal oxide/metal hydroxide condensed phase data and [Cu(H(2)O)(n)](2+) cluster structures and energies) is augmented by single-point quantum mechanices (QM) energies from [Cu(H(2)O)(n)](2+) clusters abstracted from a ReaxFF molecular dynamics simulation. This provides a convenient strategy to both enrich the training set and to validate the final force field. To further validate the force field description we performed molecular dynamics simulations on Cu(2+)/water systems. We found good agreement between our results and earlier experimental and QM-based molecular dynamics work for the average Cu/water coordination, Jahn-Teller distortion, and inversion in [Cu(H(2)O)(6)](2+) clusters and first- and second-shell O-Cu-O angular distributions, indicating that this force field gives a satisfactory description of the Cu-cation/water interactions. We believe that this force field provides a computationally convenient method for studying the solution and surface chemistry of metal cations and metal oxides and, as such, has applications for studying protein/metal cation complexes, pH-dependent crystal growth/dissolution, and surface catalysis.