Published in

SAGE Publications, Genes and Cancer, 6(1), p. 542-546

DOI: 10.1177/1947601910377490

Cold Spring Harbor Perspectives in Medicine, 10(3), p. a014324-a014324

DOI: 10.1101/cshperspect.a014324

Links

Tools

Export citation

Search in Google Scholar

Myc Function in Drosophila

Journal article published in 2010 by P. Bellosta ORCID, P. Gallant
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Myc proteins control several cellular processes, including proliferation and growth, and they play an important role in human tumorigenesis. Several years ago, single homologs of Myc, its interaction partner Max, and its antagonist Mnt were identified in Drosophila melanogaster. Here, we review the function of this so-called Max network in fruit flies, with a particular emphasis on its most obvious biological activity: the control of cellular and organismal growth. We describe the molecular basis for this growth function, as well as the interaction of Myc with other pathways known to control growth, the insulin, TOR, and hippo pathways. In addition, Drosophila Myc also controls DNA replication and influences apoptosis, both cell-autonomously and non-autonomously, in a process known as cell competition. In the future, we expect that further functions of Myc will be uncovered and that genetic approaches will increasingly be used to characterize the evolutionarily conserved molecular mechanism of Myc action, thus also benefitting our understanding of Myc biology in vertebrates.