Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Journal of Neuroscience Research, 3(66), p. 356-368

DOI: 10.1002/jnr.1228

Links

Tools

Export citation

Search in Google Scholar

Identification and Characterization of Neuronal Precursors and Their Progeny From Human Fetal Tissue

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We have examined primary human neuronal precursors (HNPs) from 18-22-week-old fetuses. We showed that E-NCAM/MAP2/beta-III tubulin-immunoreactive neuronal precursors divide in vitro and could be induced to differentiate into mature neurons in 2 weeks. HNPs did not express nestin and differentiated slowly compared to rodent neuronal restricted precursors (NRPs, 5 days). Immunocytochemical and physiological analyses showed that HNPs could generate a heterogeneous population of neurons that expressed neurofilament-associated protein and various neurotransmitters, neurotransmitter synthesizing enzymes, voltage-gated ion channels, and ligand-gated neurotransmitter receptors and could fire action potentials. Undifferentiated and differentiated HNPs did not coexpress glial markers. Only a subset of cells that expressed GFP under the control of the Talpha1 tubulin promoter was E-NCAM/beta-III tubulin-immunoreactive, indicating nonexclusive overlap between these two HNP cell populations. Overall, HNPs resemble NRPs isolated from rodent tissue and appear to be a neuronal precursor population.