Published in

American Chemical Society, Journal of Physical Chemistry C, 22(116), p. 11956-11963, 2012

DOI: 10.1021/jp3031754

Links

Tools

Export citation

Search in Google Scholar

TiO2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work, nanorods of CdS, CdSe, and CdSeS are deposited by chemical vapor deposition on TiO2 nanorod arrays, and the photoelectrochemical (PEC) performance of the heterostructures is studied comprehensively. It is found that nanorods-shaped CdS are superior to nanoparticles as the photosensitizer. The difference in the photosensitizing effect to TiO2 nanorods among CdS, CdSe, and CdSeS alloy nanorods is studied using optical and electrochemical techniques. The energy levels of these heterostructure photoelectrodes are constructed based on X-ray photoelectron spectroscopy (XPS) and diffused reflectance spectra measurements. The current–time profile with chopped light condition, in combination with time-resolved photoluminescence spectroscopy, reveals that the TiO2/CdS electrode has the lowest carrier recombination rate, highest electron injection efficiency, and highest chemical stability. Nevertheless, in terms of the overall PEC performance (photocurrent level and stability), we propose the TiO2/CdSSe electrode is most favorable.