Published in

Wiley, NMR in Biomedicine, 8(25), p. 953-968, 2012

DOI: 10.1002/nbm.2768

Links

Tools

Export citation

Search in Google Scholar

Contrast-enhanced MRI of murine myocardial infarction - Part I

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The use of contrast agents has added considerable value to the existing cardiac MRI toolbox that can be used to study murine myocardial infarction, as it enables detailed in vivo visualization of the molecular and cellular processes that occur in the infarcted and remote tissue. A variety of non-targeted and targeted contrast agents to study myocardial infarction are available and under development. Manganese, which acts as a calcium analogue, can be used to assess cell viability. Traditionally, low-molecular-weight Gd-containing contrast agents are employed to measure infarct size in a late gadolinium enhancement experiment. Gd-based blood-pool agents are used to study the vascular status of the myocardium. The use of targeted contrast agents facilitates more detailed imaging of pathophysiological processes in the acute and chronic infarct. Cell death was visualized by contrast agents functionalized with annexin A5 that binds specifically to phosphatidylserine accessible on dying cells and with an agent that binds to the exposed DNA of dead cells. Inflammation in the myocardium was depicted by contrast agents that target cell adhesion molecules expressed on activated endothelium, by contrast agents that are phagocytosed by inflammatory cells, and by using a probe that targets enzymes excreted by inflammatory cells. Cardiac remodeling processes were visualized with a contrast agent that binds to angiogenic vasculature and with an MR probe that specifically binds to collagen in the fibrotic myocardium. These recent advances in murine contrast-enhanced cardiac MRI have made a substantial contribution to the visualization of the pathophysiology of myocardial infarction, cardiac remodeling processes and the progression to heart failure, which helps to design new treatments. This review discusses the advances and challenges in the development and application of MRI contrast agents to study murine myocardial infarction.