Published in

Springer Verlag, Journal of Pharmacokinetics and Pharmacodynamics, 6(39), p. 673-681

DOI: 10.1007/s10928-012-9278-9

Links

Tools

Export citation

Search in Google Scholar

Application of ED-optimality to screening experiments for analgesic compounds in an experimental model of neuropathic pain.

Journal article published in 2012 by A. Taneja, J. Nyberg, Ec C. M. de Lange ORCID, M. Danhof, O. Della Pasqua
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In spite of the evidence regarding high variability in the response to evoked pain, little attention has been paid to its impact on the screening of drugs for inflammatory and neuropathic pain. In this study, we explore the feasibility of introducing optimality concepts to experimental protocols, enabling estimation of parameter and model uncertainty. Pharmacokinetic (PK) and pharmacodynamic data from different experiments in rats were pooled and modelled using nonlinear mixed effects modelling. Pain data on gabapentin and placebo-treated animals were generated in the complete Freund's adjuvant model of neuropathic pain. A logistic regression model was applied to optimise sampling times and dose levels to be used in an experimental protocol. Drug potency (EC(50)) and interindividual variability (IIV) were considered the parameters of interest. Different experimental designs were tested and validated by SSE (stochastic simulation and estimation) taking into account relevant exposure ranges. The pharmacokinetics of gabapentin was described by a two-compartment PK model with first order absorption (CL = 0.159 l h(-1), V(2) = 0.118 l, V(3) = 0.253 l, Ka = 0.26 h(-1), Q = 1.22 l h(-1)). Drug potency (EC(50)) for the anti-allodynic effects was estimated to be 1400 ng ml(-1). Protocol optimisation improved bias and precision of the EC50 by 6 and 11.9. %, respectively, whilst IIV estimates showed improvement of 31.89 and 14.91 %, respectively. Our results show that variability in behavioural models of evoked pain response leads to uncertainty in drug potency estimates, with potential impact on the ranking of compounds during screening. As illustrated for gabapentin, ED-optimality concepts enable analysis of discrete data taking into account experimental constraints.