Dissemin is shutting down on January 1st, 2025

Published in

American Diabetes Association, Diabetes, 5(65), p. 1268-1282, 2016

DOI: 10.2337/db15-1240

Links

Tools

Export citation

Search in Google Scholar

Disallowance of Acot7 in β-cells is required for normal glucose tolerance and insulin secretion

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Encoding acyl-CoA thioesterase-7 (Acot7) is one of ∼60 genes expressed ubiquitously across tissues but relatively silenced, or disallowed, in pancreatic β-cells. The capacity of ACOT7 to hydrolyze long-chain acyl-CoA esters suggests potential roles in β-oxidation, lipid biosynthesis, signal transduction, or insulin exocytosis. We explored the physiological relevance of β-cell–specific Acot7 silencing by re-expressing ACOT7 in these cells. ACOT7 overexpression in clonal MIN6 and INS1(832/13) β-cells impaired insulin secretion in response to glucose plus fatty acids. Furthermore, in a panel of transgenic mouse lines, we demonstrate that overexpression of mitochondrial ACOT7 selectively in the adult β-cell reduces glucose tolerance dose dependently and impairs glucose-stimulated insulin secretion. By contrast, depolarization-induced secretion was unaffected, arguing against a direct action on the exocytotic machinery. Acyl-CoA levels, ATP/ADP increases, membrane depolarization, and Ca2+ fluxes were all markedly reduced in transgenic mouse islets, whereas glucose-induced oxygen consumption was unchanged. Although glucose-induced increases in ATP/ADP ratio were similarly lowered after ACOT7 overexpression in INS1(832/13) cells, changes in mitochondrial membrane potential were unaffected, consistent with an action of Acot7 to increase cellular ATP consumption. Because Acot7 mRNA levels are increased in human islets in type 2 diabetes, inhibition of the enzyme might provide a novel therapeutic strategy.