Links

Tools

Export citation

Search in Google Scholar

Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions

Journal article published in 2006 by Adrien Blanchet, Jean Dolbeault ORCID, Benoit Perthame
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The Keller-Segel system describes the collective motion of cells which are attracted by a chemical substance and are able to emit it. In its simplest form it is a conservative drift-diffusion equation for the cell density coupled to an elliptic equation for the chemo-attractant concentration. It is known that, in two space dimensions, for small initial mass, there is global existence of solutions and for large initial mass blow-up occurs. In this paper we complete this picture and give a detailed proof of the existence of weak solutions below the critical mass, above which any solution blows-up in finite time in the whole euclidean space. Using hypercontractivity methods, we establish regularity results which allow us to prove an inequality relating the free energy and its time derivative. For a solution with sub-critical mass, this allows us to give for large times an ``intermediate asymptotics'' description of the vanishing. In self-similar coordinates, we actually prove a convergence result to a limiting self-similar solution which is not a simple reflect of the diffusion.