Published in

American Chemical Society, Accounts of Chemical Research, 8(45), p. 1258-1267, 2012

DOI: 10.1021/ar200321n

Links

Tools

Export citation

Search in Google Scholar

Click Nucleic Acid Ligation: Applications in Biology and Nanotechnology

Journal article published in 2012 by Afaf H. El-Sagheer, Tom Brown ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Biochemical strategies that use a combination of synthetic oligonucleotides, thermostable DNA polymerases, and DNA ligases can produce large DNA constructs up to 1 megabase in length. Although these ambitious targets are feasible biochemically, comparable technologies for the chemical synthesis of long DNA strands lag far behind. The best available chemical approach is the solid-phase phosphoramidite method, which can be used to assemble DNA strands up to 150 bases in length. Beyond this point, deficiencies in the chemistry make it impossible to produce pure DNA. A possible alternative approach to the chemical synthesis of large DNA strands is to join together carefully purified synthetic oligonucleotides by chemical methods. Click ligation by the copper-catalyzed azide–alkyne (CuAAC) reaction could facilitate this process. In this Account, we describe the synthesis, characterization, and applications of oligonucleotides prepared by click ligation.