American Physical Society, Physical Review A, 1(83), 2011
DOI: 10.1103/physreva.83.012311
Full text: Download
We propose an approach for studying quantum information and performing high resolution spectroscopy of rotational states of trapped molecular ions using an on-chip superconducting microwave resonator. Molecular ions have several advantages over neutral molecules. Ions can be loaded into deep (1 eV) RF traps and are trapped independent of the electric dipole moment of their rotational transition. Their charge protects them from motional dephasing and prevents collisional loss, allowing 1 s coherence times when used as a quantum memory, with detection of single molecules possible in