Dissemin is shutting down on January 1st, 2025

Published in

American Physical Society, Physical Review A, 1(83), 2011

DOI: 10.1103/physreva.83.012311

Links

Tools

Export citation

Search in Google Scholar

Cavity QED in a molecular ion trap

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We propose an approach for studying quantum information and performing high resolution spectroscopy of rotational states of trapped molecular ions using an on-chip superconducting microwave resonator. Molecular ions have several advantages over neutral molecules. Ions can be loaded into deep (1 eV) RF traps and are trapped independent of the electric dipole moment of their rotational transition. Their charge protects them from motional dephasing and prevents collisional loss, allowing 1 s coherence times when used as a quantum memory, with detection of single molecules possible in