Published in

Zoological Research, 6(33), p. 121-128

DOI: 10.3724/sp.j.1141.2012.e05-06e121

Links

Tools

Export citation

Search in Google Scholar

Peak identification for ChIP-seq data with no controls

Journal article published in 2013 by Zhang Yf, Yanfeng Zhang ORCID, Bing Su
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is increasingly being used for genome-wide profiling of transcriptional regulation, as this technique enables dissection of the gene regulatory networks. With input as control, a variety of statistical methods have been proposed for identifying the enriched regions in the genome, i.e., the transcriptional factor binding sites and chromatin modifications. However, when there are no controls, whether peak calling is still reliable awaits systematic evaluations. To address this question, we used a Bayesian framework approach to show the effectiveness of peak calling without controls (PCWC). Using several different types of ChIP-seq data, we demonstrated the relatively high accuracy of PCWC with less than a 5% false discovery rate (FDR). Compared with previously published methods, e.g., the model-based analysis of ChIP-seq (MACS), PCWC is reliable with lower FDR. Furthermore, to interpret the biological significance of the called peaks, in combination with microarray gene expression data, gene ontology annotation and subsequent motif discovery, our results indicate PCWC possesses a high efficiency. Additionally, using in silico data, only a small number of peaks were identified, suggesting the significantly low FDR for PCWC.