Published in

Elsevier, NeuroImage, 1(56), p. 212-219, 2011

DOI: 10.1016/j.neuroimage.2011.01.050

Links

Tools

Export citation

Search in Google Scholar

Automated hippocampal shape analysis predicts the onset of dementia in Mild Cognitive Impairment

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The hippocampus is involved at the onset of the neuropathological pathways leading to Alzheimer’s disease (AD). Individuals with Mild Cognitive Impairment (MCI) are at increased risk of AD. Hippocampal volume has been shown to predict which MCI subjects will convert to AD. Our aim in the present study was to produce a fully automated prognostic procedure, scalable to high throughput clinical and research applications, for the prediction of MCI conversion to AD using 3D hippocampal morphology. We used an automated analysis for the extraction and mapping of the hippocampus from structural magnetic resonance scans to extract 3D hippocampal shape morphology, and we then applied machine learning classification to predict conversion from MCI to AD. We investigated the accuracy of prediction in 103 MCI subjects (mean age 74.1 years) from the longitudinal AddNeuroMed study. Our model correctly predicted MCI conversion to dementia within a year at an accuracy of 80% (sensitivity 77%, specificity 80%), a performance which is competitive with previous predictive models dependent on manual measurements. Categorization of MCI subjects based on hippocampal morphology revealed more rapid cognitive deterioration in MMSE scores (p