Published in

Nature Research, Scientific Reports, 1(5), 2015

DOI: 10.1038/srep12749

Links

Tools

Export citation

Search in Google Scholar

Generation-based life table analysis reveals manifold effects of inbreeding on the population fitness in Plutella xylostella

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractUnderstanding how inbreeding affects fitness is biologically important for conservation and pest management. Despite being a worldwide pest of many economically important cruciferous crops, the influence of inbreeding on diamondback moth, Plutella xylostella (L.), populations is currently unknown. Using age-stage-specific life tables, we quantified the inbreeding effects on fitness-related traits and demographic parameters of P. xylostella. Egg hatching rate, survival and fecundity of the inbred line significantly declined compared to those of the outbred line over time. The inbred P. xylostella line showed significantly lower intrinsic rate of increase (r), net reproduction rate (R0) and finite increase rate (λ) and increasing generation time (T). Inbreeding effects vary with developmental stages and the fitness-related traits can be profoundly affected by the duration of inbreeding. Our work provides a foundation for further studies on molecular and genetic bases of the inbreeding depression for P. xylostella.