Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (868), 2005

DOI: 10.1557/proc-868-c6.8

Links

Tools

Export citation

Search in Google Scholar

Growth Mechanism and Opmization of MOD CeO2 Buffer Layers for TFA YBa2Cu3O7/CeO2 Multilayers

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe evolution from a partially oriented granular microstructure to a dense epitaxial one in CeO2 buffer layers deposited by metallorganic decomposition (MOD) on single crystal Y-stabilised ZrO2 (YSZ) substrates, has been investigated. CeO2 buffer layers were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), reflection high energy electron diffraction (RHEED), transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). Reducing atmospheric conditions inhibit grain growth resulting in a nanometric granular microstructure with a high concentration of C impurities decorating grain boundaries and porosity. Oxidation and elimination of C species promotes grain growth resulting in a dense epitaxial film, as well as stabilizes otherwise energetically prohibitive polar (001) planes. Trifluoracetate (TFA) derived MOD YBa2Cu3O7 (YBCO) films deposited on optimized CeO2 buffers exhibit a sharp interface while the undesired reaction giving BaCeO3 is minimized. Jc values of 1.5 MA/cm2 and 14 MA/cm2 at 77K and 5K, respectively, are achieved.