Published in

HFSP Publishing, HFSP Journal, 6(2), p. 378-387

DOI: 10.2976/1.2976660

Links

Tools

Export citation

Search in Google Scholar

The extremely slow-exchanging core and acid-denatured state of green fluorescent protein

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Green fluorescent protein (GFP) is a large protein with a complex eleven-stranded beta-barrel structure. Previous studies have shown that it has a complex energy landscape for folding on which there are several intermediate states and a denatured state with significant residual structure. Here, we use two different types of HD exchange measurement and nuclear magnetic resonance (NMR) techniques to probe the energy landscape for folding of GFP in further detail. HD exchange experiments were performed over a wide range of conditions including different concentrations of denaturant. Results show that the penetration model dominates the exchange mechanism, consistent with the known stability and slow unfolding kinetics of GFP. HD exchange experiments at high pH establish that there is an extremely slow-exchanging superstable core of amide protons in GFP that are clustered and located in beta-strands 1, 2, 4, 5, and 6. These residues form part of a mini-beta-sheet which we propose constitutes a folding nucleus. Using a pulsed-labeling strategy, the acid-denatured state has been investigated and the residual structure observed in earlier studies shown to locate to beta-strands 1 and 3. There is some evidence that this residual structure is stabilized by a localized hydrophobic collapse of the polypeptide chain.