Published in

Public Library of Science, PLoS ONE, 7(10), p. e0133280, 2015

DOI: 10.1371/journal.pone.0133280

Links

Tools

Export citation

Search in Google Scholar

c-Myb Binding Sites in Haematopoietic Chromatin Landscapes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Strict control of tissue-specific gene expression plays a pivotal role during lineage commit- ment. The transcription factor c-Myb has an essential role in adult haematopoiesis and func- tions as an oncogene when rearranged in human cancers. Here we have exploited digital genomic footprinting analysis to obtain a global picture of c-Myb occupancy in the genome of six different haematopoietic cell-types. We have biologically validated several c-Myb foot- prints using c-Myb knockdown data, reporter assays and DamID analysis. We show that our predicted conserved c-Myb footprints are highly dependent on the haematopoietic cell type, but that there is a group of gene targets common to all cell-types analysed. Further- more, we find that c-Myb footprints co-localise with active histone mark H3K4me3 and are significantly enriched at exons. We analysed co-localisation of c-Myb footprints with 104 chromatin regulatory factors in K562 cells, and identified nine proteins that are enriched together with c-Myb footprints on genes positively regulated by c-Myb and one protein enriched on negatively regulated genes. Our data suggest that c-Myb is a transcription fac- tor with multifaceted target regulation depending on cell type. ; © 2015 Bengtsen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.