Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 6(121), p. 1295-1303, 2017

DOI: 10.1021/acs.jpcb.7b00345

Links

Tools

Export citation

Search in Google Scholar

2D-IR Spectroscopy Shows that Optimized DNA Minor Groove Binding of Hoechst33258 Follows an Induced Fit Model

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The induced fit binding model describes a conformational change occurring when a small molecule binds to its biomacromolecular target. The result is enhanced non-covalent interactions between ligand and biomolecule. Induced fit is well-established for small molecule-protein interactions, but its relevance to small molecule-DNA binding is less clear. We investigate the molecular determinants of Hoechst33258 binding to its preferred A-tract sequence relative to a sub-optimal alternating A-T sequence. Results from 2-dimensional infrared spectroscopy, which is sensitive to H-bonding and molecular structure changes, show that Hoechst33258 binding results in loss of minor groove spine of hydration in both sequences, but an additional perturbation of the base propeller twists occurs in the A-tract binding region. This induced fit maximizes favourable ligand-DNA enthalpic contributions in the optimal binding case and demonstrates that controlling the molecular details that induce subtle changes in DNA structure may hold the key to designing next-generation DNA-binding molecules.