Dissemin is shutting down on January 1st, 2025

Published in

Hindawi, BioMed Research International, (2014), p. 1-8, 2014

DOI: 10.1155/2014/860241

Links

Tools

Export citation

Search in Google Scholar

Assessment of Tumor Cells in a Mouse Model of Diffuse Infiltrative Glioma by Raman Spectroscopy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Glioma of infiltrative nature is challenging for surgeons to achieve tumor-specific and maximal resection. Raman spectroscopy provides structural information on the targeted materials as vibrational shifts. We utilized Raman spectroscopy to distinguish invasive tumors from normal tissues. Spectra obtained from replication-competent avian sarcoma-(RCAS-) based infiltrative glioma cells and glioma tissues (resembling low-grade human glioma) were compared with those obtained from normal mouse astrocytes and normal tissues. In cell analysis, the spectra at 950–1000, 1030, 1050–1100, 1120–1130, 1120–1200, 1200–1300, 1300–1350, and 1450 cm−1were significantly higher in infiltrative glioma cells than in normal astrocytes. In brain tissue analysis, the spectra at 1030, 1050–1100, and 1200–1300 cm−1were significantly higher in infiltrative glioma tissues than in normal brain tissues. These spectra reflect the structures of proteins, lipids, and DNA content. The sensitivity and specificity to predict glioma cells by distinguishing normal cells were 98.3% and 75.0%, respectively. Principal component analysis elucidated the significance of spectral difference between tumor tissues and normal tissues. It is possible to distinguish invasive tumors from normal tissues by using Raman spectroscopy.