Dissemin is shutting down on January 1st, 2025

Published in

Cell Press, Trends in Plant Science, 9(21), p. 738-748

DOI: 10.1016/j.tplants.2016.05.008

Links

Tools

Export citation

Search in Google Scholar

RNA ‘Information Warfare’ in Pathogenic and Mutualistic Interactions

Journal article published in 2016 by Thomas Chaloner, Jan A. L. van Kan ORCID, Robert T. Grant-Downton
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Regulatory non-coding RNAs are emerging as key players in host–pathogen interactions. Small RNAs such as microRNAs are implicated in regulating plant transcripts involved in immunity and defence. Surprisingly, RNAs with silencing properties can be translocated from plant hosts to various invading pathogens and pests. Small RNAs are now confirmed virulence factors, with the first report of fungal RNAs that travel to host cells and hijack post-transcriptional regulatory machinery to suppress host defence. Here, we argue that trans-organism movement of RNAs represents a common mechanism of control in diverse interactions between plants and other eukaryotes. We suggest that extracellular vesicles are the key to such RNA movement events. Plant pathosystems serve as excellent experimental models to dissect RNA ‘information warfare’ and other RNA-mediated interactions. Regulatory non-coding RNAs are emerging as key players in host–pathogen interactions. Small RNAs such as microRNAs are implicated in regulating plant transcripts involved in immunity and defence. Surprisingly, RNAs with silencing properties can be translocated from plant hosts to various invading pathogens and pests. Small RNAs are now confirmed virulence factors, with the first report of fungal RNAs that travel to host cells and hijack post-transcriptional regulatory machinery to suppress host defence. Here, we argue that trans-organism movement of RNAs represents a common mechanism of control in diverse interactions between plants and other eukaryotes. We suggest that extracellular vesicles are the key to such RNA movement events. Plant pathosystems serve as excellent experimental models to dissect RNA ‘information warfare’ and other RNA-mediated interactions.