Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Astronomy, 2(1), 2017

DOI: 10.1038/s41550-016-0027

Links

Tools

Export citation

Search in Google Scholar

Origin of meteoritic stardust unveiled by a revised proton-capture rate of 17O

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Stardust grains recovered from meteorites provide highprecision snapshots of the isotopic composition of the stellar environment in which they formed1. Attributing their origin to specific types of stars, however, often proves difficult. Intermediate-mass stars of 4–8 solar masses are expected to have contributed a large fraction of meteoritic stardust2,3. Yet, no grains have been found with the characteristic isotopic compositions expected for such stars4,5. This is a long-standing puzzle, which points to serious gaps in our understanding of the lifecycle of stars and dust in our Galaxy. Here we show that the increased proton-capture rate of 17O reported by a recent underground experiment6 leads to 17O/16O isotopic ratios that match those observed in a population of stardust grainsfor proton-burning temperatures of 60–80 MK. These temperatures are achieved at the base of the convective envelope during the late evolution of intermediate-mass stars of 4–8 solar masses7–9, which reveals them as the most likely site of origin of the grains. This result provides direct evidence that these stars contributed to the dust inventory from which the Solar System formed.