Links

Tools

Export citation

Search in Google Scholar

The clinical, neuroanatomical, and neuropathologic phenotype of TBK1-associated frontotemporal dementia: A longitudinal case report

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Introduction: Mutations in the TANK-binding kinase 1 (TBK1) gene have recently been shown to cause frontotemporal dementia (FTD). However, the phenotype of TBK1-associated FTD is currently unclear. / Methods: We performed a single case longitudinal study of a patient who was subsequently found to have a novel A705fs mutation in the TBK1 gene. He was assessed annually for more than a 7-year period with a series of clinical, cognitive, and magnetic resonance imaging assessments. His brain underwent pathological examination at postmortem. / Results: The patient presented at the age of 64 years with an 18-month history of personality change including increased rigidity and obsessiveness, apathy, loss of empathy, and development of a sweet tooth. His mother had developed progressive behavioral and cognitive impairment from the age of 57 years. Neuropsychometry revealed intact cognition at first assessment. Magnetic resonance imaging showed focal right temporal lobe atrophy. Over the next few years his behavioral problems progressed and he developed cognitive impairment, initially with anomia and prosopagnosia. Neurological examination remained normal throughout without any features of motor neurone disease. He died at the age of 72 years and postmortem showed TDP-43 type A pathology but with an unusual novel feature of numerous TDP-43–positive neuritic structures at the cerebral cortex/subcortical white matter junction. There was also associated argyrophilic grain disease not previously reported in other TBK1 mutation cases. / Discussion: TBK1-associated FTD can be associated with right temporal variant FTD with progressive behavioral change and relatively intact cognition initially. The case further highlights the benefits of next-generation sequencing technologies in the diagnosis of neurodegenerative disorders and the importance of detailed neuropathologic analysis.