Published in

American Institute of Physics, Applied Physics Letters, 11(109), p. 113103

DOI: 10.1063/1.4962551

Links

Tools

Export citation

Search in Google Scholar

Electrolytic phototransistor based on graphene-MoS2 van der Waals p-n heterojunction with tunable photoresponse

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Van der Waals (vdW) heterostructures obtained by stacking 2D materials offer a promising route for next generation devices by combining different unique properties in completely new artificial materials. In particular, the vdW heterostructures combine high mobility and optical properties that can be exploited for optoelectronic devices. Since the p-n junction is one of the most fundamental units of optoelectronics, we propose an approach for its fabrication based on the intrinsic n doped MoS2 and the p doped bilayer graphene hybrid interfaces. We demonstrate the control of the photoconduction properties using electrolytic gating which ensures a low bias operation. We show that by finely choosing the doping value of each layer, the photoconductive properties of the hybrid system can be engineered to achieve magnitude and sign control of the photocurrent. Finally, we provide a simple phase diagram relating the photoconductive behavior with the chosen doping, which we believe can be very useful for the future design of the van der Waals based photodetectors.