Published in

Taylor and Francis Group, Biofouling: The Journal of Bioadhesion and Biofilm Research, 1(33), p. 98-111, 2016

DOI: 10.1080/08927014.2016.1259414

Links

Tools

Export citation

Search in Google Scholar

Proteome analysis of human serum proteins adsorbed onto different titanium surfaces used in dental implants

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Titanium dental implants are commonly used due to their biocompatibility and biochemical properties; blasted acid-etched Ti is used more frequently than smooth Ti surfaces. In this study, physico-chemical characterisation revealed important differences in roughness, chemical composition and hydrophilicity, but no differences were found in cellular in vitro studies (proliferation and mineralization). However, the deposition of proteins onto the implant surface might affect in vivo osseointegration. To test that hypothesis, protein layers formed on discs of both surface type after incubation with human serum were analysed. Using mass spectrometry (LC/MS/MS), 218 proteins were identified, 30 of which were associated with bone metabolism. Interestingly, Apo E, antithrombin and protein C adsorbed mostly onto blasted and acid-etched Ti, whereas the proteins of the complement system (C3) were found predominantly on smooth Ti surfaces. These results suggest that physico-chemical characteristics could be responsible for the differences observed in the adsorbed protein layer. ; This work was supported by Ministerio de Economía y Competitividad (MINECO) [MAT 2014-51918-C2-2-R], Universidad de Castellón [P11B2014-19], Plan de Promoción de la Investigación de la Universidad Jaume I under grant [Predoc/2014/25] and Generalitat Valenciana under grant [Grisolia/2014/016]. The authors would like to thank Antonio Coso and Jaime Franco (GMI-Ilerimplant) for their inestimable contribution to this study, and Iraida Escobes (CIC bioGUNE) for her valuable technical assistance.