Published in

Springer, Animal Cognition, 3(20), p. 459-471, 2017

DOI: 10.1007/s10071-017-1072-z

Links

Tools

Export citation

Search in Google Scholar

Touch screen assays of behavioural flexibility and error characteristics in Eastern grey squirrels (Sciurus carolinensis)

Journal article published in 2017 by Pky Chow ORCID, La Leaver, Ming Wang, Seg Lea
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This is the final version of the article. Available from the publisher via the DOI in this record. ; Behavioural flexibility allows animals to adjust their behaviours according to changing environmental demands. Such flexibility is frequently assessed by the discrimination–reversal learning task. We examined grey squirrels’ behavioural flexibility, using a simultaneous colour discrimination–reversal learning task on a touch screen. Squirrels were trained to select their non-preferred colour in the discrimination phase, and their preferred colour was rewarded in a subsequent reversal phase. We used error rates to divide learning in each phase into three stages (perseveration, chance level and ‘learned’) and examined response inhibition and head-switching during each stage. We found consistent behavioural patterns were associated with each learning stage: in the perseveration stage, at the beginning of each training phase, squirrels showed comparable response latencies to correct and incorrect stimuli, along with a low level of head-switching. They quickly overcame perseveration, typically in one to three training blocks. In the chance-level stage, response latencies to both stimuli were low, but during initial discrimination squirrels showed more head-switches than in the previous stage. This suggests that squirrels were learning the current reward contingency by responding rapidly to a stimulus, but with increased attention to both stimuli. In the learned stage, response latencies to the correct stimulus and the number of head-switches were at their highest, whereas incorrect response latencies were at their lowest, and differed significantly from correct response latencies. These results suggest increased response inhibition and attention allowed the squirrels to minimise errors. They also suggest that errors in the ‘learned’ stage were related to impulsive emission of the pre-potent or previously learned responses.