Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/srep42534

Links

Tools

Export citation

Search in Google Scholar

Brain fingerprints of olfaction: a novel structural method for assessing olfactory cortical networks in health and disease

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractOlfactory deficits are a common (often prodromal) symptom of neurodegenerative or psychiatric disorders. As such, olfaction could have great potential as an early biomarker of disease, for example using neuroimaging to investigate the breakdown of structural connectivity profile of the primary olfactory networks. We investigated the suitability for this purpose in two existing neuroimaging maps of olfactory networks. We found problems with both existing neuroimaging maps in terms of their structural connectivity to known secondary olfactory networks. Based on these findings, we were able to merge the existing maps to a new template map of olfactory networks with connections to all key secondary olfactory networks. We introduce a new method that combines diffusion tensor imaging with probabilistic tractography and pattern recognition techniques. This method can obtain comprehensive and reliable fingerprints of the structural connectivity underlying the neural processing of olfactory stimuli in normosmic adults. Combining the novel proposed method for structural fingerprinting with the template map of olfactory networks has great potential to be used for future neuroimaging investigations of olfactory function in disease. With time, the proposed method may even come to serve as structural biomarker for early detection of disease.