Dissemin is shutting down on January 1st, 2025

Published in

Springer, Lecture Notes in Computer Science, p. 238-251, 2016

DOI: 10.1007/978-3-319-40349-6_23

Links

Tools

Export citation

Search in Google Scholar

Effect of Heuristics on Serendipity in Path-Based Storytelling with Linked Data

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Path-based storytelling with Linked Data on the Web provides users the ability to discover concepts in an entertaining and educational way. Given a query context, many state-of-the-art pathfinding approaches aim at telling a story that coincides with the user's expectations by investigating paths over Linked Data on the Web. By taking into account serendipity in storytelling, we aim at improving and tailoring existing approaches towards better fitting user expectations so that users are able to discover interesting knowledge without feeling unsure or even lost in the story facts. To this end, we propose to optimize the link estimation between - and the selection of facts in a story by increasing the consistency and relevancy of links between facts through additional domain delineation and refinement steps. In order to address multiple aspects of serendipity, we propose and investigate combinations of weights and heuristics in paths forming the essential building blocks for each story. Our experimental findings with stories based on DBpedia indicate the improvements when applying the optimized algorithm.